IMPORTANTE: Opção NÃO OFICIAL da WISOL, indicamos uso do KEIL C
O objetivo deste BLOG é demonstrar como é possível programar o módulo WISOL LOM204A02 via Arduino Framework e assim utilizá-lo como OPENCPU (atualmente programado com o KEIL C), também mostra como adicioná-lo na Internet via Ethernet 802.3.
Será enviada Temperatura e Umidade (Random) para o servidor TTN e também será realizado um HTTP Request em
arduino.tips
IMPORTANTE: Opção NÃO OFICIAL da WISOL, indicamos uso do KEIL C
O exemplo fará a leitura do sensor AHT10 VIA I2C e então fará a publicação no servidor loraWAN TTN. No exemplo, foi utilizado o KIT LOM204A02 da Wisol, e como gateway LoraWAN um Dragino modelo LG308 e servidor TTN.
WIZNET W5500O chip W5500 é um controlador Ethernet embutido TCP/IP cabeado que fornece conexão de Internet mais fácil para sistemas embarcados. O W5500 permite que os usuários tenham a conectividade com a Internet em seus aplicativos apenas usando o único chip em que Pilha TCP/IP, 10/100 Ethernet MAC e PHY embutidos.O TCP/IP Hardwired da WIZnet é a tecnologia comprovada no mercado que suporta TCP, UDP, Protocolos IPv4, ICMP, ARP, IGMP e PPPoE. W5500 incorpora a memória interna de 32 Kbytes buffer de memória para o processamento de pacotes Ethernet. Se você usa o W5500, você pode implemente o aplicativo Ethernet apenas adicionando o programa de soquete simples. Sua maneira mais rápida e fácil em vez de usar qualquer outra solução Ethernet incorporada. Comercial pode usar 8 soquetes de hardware independentes simultaneamente.SPI (Serial Peripheral Interface) é fornecido para fácil integração com o MCU. O SPI do W5500 suporta velocidade de 80 MHz e novo protocolo SPI eficiente para o comunicação de rede de alta velocidade. Para reduzir o consumo de energia do sistema, W5500 fornece WOL (Wake on LAN) e modo de desligamento.
KHOIH LIBRARIES - ETHERNET_GENERIC
Biblioteca Ethernet simples para placas AVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52 e RASPBERRY_PI_PICO usando escudos Ethernet W5100, W5200, W5500, W5100S Com esta biblioteca, você pode usar o Arduino Ethernet (blindagem ou placa) para se conectar à Internet. A biblioteca fornece funcionalidades de cliente e servidor. A biblioteca permite que você se conecte a uma rede local também com DHCP e resolva o DNS. A biblioteca h-only agora suporta recursos SPI1/SPI2, EthernetLarge, Ethernet2 e Ethernet3 simplesmente alterando as definições no esboço. RASPBERRY_PI_PICO usando núcleo arduino-pico agora pode usar SPI1. Agora STM32, placas Arduino_mbed podem usar qualquer hardware/software personalizado SPI
O chip W5500 é um controlador Ethernet embutido TCP/IP cabeado que fornece conexão de Internet mais fácil para sistemas embarcados. O W5500 permite que os usuários tenham a conectividade com a Internet em seus aplicativos apenas usando o único chip em que Pilha TCP/IP, 10/100 Ethernet MAC e PHY embutidos.
O TCP/IP Hardwired da WIZnet é a tecnologia comprovada no mercado que suporta TCP, UDP, Protocolos IPv4, ICMP, ARP, IGMP e PPPoE. W5500 incorpora a memória interna de 32 Kbytes buffer de memória para o processamento de pacotes Ethernet. Se você usa o W5500, você pode implemente o aplicativo Ethernet apenas adicionando o programa de soquete simples. Sua maneira mais rápida e fácil em vez de usar qualquer outra solução Ethernet incorporada. Comercial pode usar 8 soquetes de hardware independentes simultaneamente.
SPI (Serial Peripheral Interface) é fornecido para fácil integração com o MCU. O SPI do W5500 suporta velocidade de 80 MHz e novo protocolo SPI eficiente para o comunicação de rede de alta velocidade. Para reduzir o consumo de energia do sistema, W5500 fornece WOL (Wake on LAN) e modo de desligamento.
KHOIH LIBRARIES - ETHERNET_GENERIC
Biblioteca Ethernet simples para placas AVR, Portenta_H7, Teensy, SAM DUE, SAMD21, SAMD51, STM32F/L/H/G/WB/MP1, nRF52 e RASPBERRY_PI_PICO usando escudos Ethernet W5100, W5200, W5500, W5100S Com esta biblioteca, você pode usar o Arduino Ethernet (blindagem ou placa) para se conectar à Internet. A biblioteca fornece funcionalidades de cliente e servidor. A biblioteca permite que você se conecte a uma rede local também com DHCP e resolva o DNS. A biblioteca h-only agora suporta recursos SPI1/SPI2, EthernetLarge, Ethernet2 e Ethernet3 simplesmente alterando as definições no esboço. RASPBERRY_PI_PICO usando núcleo arduino-pico agora pode usar SPI1. Agora STM32, placas Arduino_mbed podem usar qualquer hardware/software personalizado SPI
TTN
The Thing Network
A Rede de Coisas (TTN) é uma iniciativa iniciada pela sociedade civil holandesa. O objetivo é ter redes LoRaWAN instaladas em todas as cidades do mundo. Ao interconectar essas redes locais, a TTN quer construir uma infra-estrutura mundial para facilitar uma Internet das Coisas (IoT) pública.
A The Things Network (TTN) é o servidor IoT na nuvem utilizado nesse projeto. É um dos servidores gratuitos para LoRaWAN mais utilizados, com mais de 90 mil desenvolvedores, mais de 9 mil gateways de usuários conectados à rede ao redor do mundo e mais de 50 mil aplicações em funcionamento.
A TTN comercializa nós e gateways LoRa e provê treinamento individual e coletivo para empresas e desenvolvedores que desejam utilizar o LoRa. Possui uma comunidade bem ativa nos fóruns, sempre colaborando e ajudando a resolver problemas, além de prover diversos meios de integrar a TTN com a aplicação que se deseja usar. Possui integração nativa com diversas aplicações como: Cayenne, Hypertext Transfer Protocol (HTTP), permitindo ao usuário realizar uplink para um gateway e receber downlink por HTTP, OpenSensors e EVRYTHNG . Caso o usuário queira criar sua própria aplicação, a TTN disponibiliza Application Programming Interface (API) para uso com Message Queuing Telemetry Transport (MQTT) e diversos Software Developer Kits (SDK) para uso com as linguagens Python, Java , Node.Js , NODE-RED e Go
A rede TTN utiliza o protocolo LoRaWAN objetivando uma cobertura em longo alcance para os dispositivos da rede, caracterizando-a assim com uma Wide Area Network (WAN). Devido ao baixo consumo de energia e ao uso da tecnologia LoRa, é chamada de LPWAN (Low Power Wide Area Network). O grande diferencial da TTN é seu estabelecimento como uma rede aberta (open-source) e colaborativa (crowd-sourced), onde qualquer usuário pode contribuir instalando um gateway em sua residência.
Os elementos da TTN são classificados como:
• Endpoints (nós): Os dispositivos responsáveis pela camada de sensoriamento da rede, o endpoint LoRaWAN. Podem coletar informações através de sensores e também acionar dispositivos/máquinas via atuadores. São configurados através de uma das três classes distintas do protocolo LaRaWAN;
• Gateways: Elementos responsáveis por concentrar e processar as informações enviadas pelos endpoints. Os gateways em geral estão conectados a internet, seja por WiFi/Ethernet ou 3G/4G em locais remotos. Mesmo que uma mesma rede LoRaWAN tenha diferentes objetivos, baseados em aplicações distintas, os gateways possuem o objetivo comum de fornecer a maior área de cobertura possível;
• Aplicações: Conectar e interligar os diferentes dispositivos da rede TTN para o fornecimento de informações gerais sobre a coleta de dados dos dispositivos.
ARDUINO
O que é Arduino? Se você sabe pouco sobre Arduino, por favor dê uma olhada abaixo:
Você conhece Arduino. Instale o IDE primeiro:
https://www.arduino.cc/en/Main/Software
Você conhece Arduino. Instale o IDE primeiro:
https://www.arduino.cc/en/Main/Software
LOM204 e Arduino
LOM204 é baseado em STM32L071. No Arduino STM32 existe este core.
Como instalar Arduino STM32?
adicionar em Arquivo Preferências URLs adicionais
http://github.com/stm32duino/BoardManagerFiles/raw/main/package_stmicroelectronics_index.json
Em seguida, instale o BSP para STM32. Se a instalação estiver concluída como segue:
LIB LoraWAN para Arduino - LMIC (Catena)
Baixe a biblioteca LoRaWAN de:
mcci-catena/arduino-lmic: LoraWAN-MAC-in-C library, adapted to run under the Arduino environment (github.com)
mcci-catena/arduino-lmic: LoraWAN-MAC-in-C library, adapted to run under the Arduino environment (github.com)
POR FAVOR, LEIA O DOCUMENTO!
Adicione ao Arduino IDE:
Abra o exemplo TTN-OTA.ino e configure 3 parâmetros para LoRaWAN_OTAA os quais deve ser obtidos no servidor TTN.
Defina mapeamento de Pinos para ser compatível com LOM204.
const lmic_pinmap lmic_pins = {
.nss = RADIO_NSS,
.rxtx = RADIO_ANT_SWITCH_HF,
.rst = RADIO_RESET,
.dio = {RADIO_DIO_0, RADIO_DIO_1, RADIO_DIO_2},
};
Defina a Região
lmic_project_config.h
// project-specific definitions
//#define CFG_eu868 1
//#define CFG_us915 1
#define CFG_au915 1
//#define CFG_as923 1
// #define LMIC_COUNTRY_CODE LMIC_COUNTRY_CODE_JP /* for as923-JP */
//#define CFG_kr920 1
//#define CFG_in866 1
#define CFG_sx1276_radio 1
//#define LMIC_USE_INTERRUPTS
Adicionar em boards.txt
# LOM204
GenL0.menu.pnum.GENERIC_L072CZYX=WISOL LOM204
GenL0.menu.pnum.GENERIC_L072CZYX.upload.maximum_size=131072
GenL0.menu.pnum.GENERIC_L072CZYX.upload.maximum_data_size=20480
GenL0.menu.pnum.GENERIC_L072CZYX.build.board=GENERIC_L072CZYX
GenL0.menu.pnum.GENERIC_L072CZYX.build.product_line=STM32L072xx
GenL0.menu.pnum.GENERIC_L072CZYX.build.variant=STM32L0xx/LOM204
Teremos então no menu o LOM204
No PACKAGE do STM32, alguns arquivos tiveram que ser alterados:
Em
C:\Users\Usuario\AppData\Local\Arduino15\packages\STMicroelectronics\hardware\stm32\2.2.0\variants\STM32L0xx
Descompacte
Teremos em variants uma placa LOM204
Conteúdo de variant_generic.h (alterado para LOM204)
/*
*******************************************************************************
* Copyright (c) 2020-2021, STMicroelectronics
* All rights reserved.
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
*******************************************************************************
*/
#pragma once
/*----------------------------------------------------------------------------
* STM32 pins number
*----------------------------------------------------------------------------*/
#define PA0 PIN_A0
#define PA1 PIN_A1
#define PA2 PIN_A2
#define PA3 PIN_A3
#define PA4 PIN_A4
#define PA5 PIN_A5
#define PA6 PIN_A6
#define PA7 PIN_A7
#define PA8 8
#define PA9 9
#define PA10 10
#define PA11 11
#define PA12 12
#define PA13 13
#define PA14 14
#define PA15 15
#define PB0 PIN_A8
#define PB1 PIN_A9
#define PB2 18
#define PB3 19
#define PB4 20
#define PB5 21
#define PB6 22
#define PB7 23
#define PB8 24
#define PB9 25
#define PB10 26
#define PB11 27
#define PB12 28
#define PB13 29
#define PB14 30
#define PB15 31
#define PC0 PIN_A10
#define PC1 PIN_A11
#define PC2 PIN_A12
#define PC13 35
#define PC14 36
#define PC15 37
#define PH0 38
#define PH1 39
// Alternate pins number
#define PA2_ALT1 (PA2 | ALT1)
#define PA3_ALT1 (PA3 | ALT1)
#define PA6_ALT1 (PA6 | ALT1)
#define PA7_ALT1 (PA7 | ALT1)
#define PA14_ALT1 (PA14 | ALT1)
#define PB4_ALT1 (PB4 | ALT1)
#define PB5_ALT1 (PB5 | ALT1)
#define NUM_DIGITAL_PINS 40
#define NUM_ANALOG_INPUTS 13
// On-board LED pin number
#ifndef LED_BUILTIN
#define LED_BUILTIN PNUM_NOT_DEFINED
#endif
// On-board user button
#ifndef USER_BTN
#define USER_BTN PNUM_NOT_DEFINED
#endif
// SPI definitions
#ifndef PIN_SPI_SS
//LOM204 - SX1276
#define PIN_SPI_SS PA4
#endif
#ifndef PIN_SPI_MOSI
//LOM204 - SX1276
#define PIN_SPI_MOSI PA7
#endif
#ifndef PIN_SPI_MISO
//LOM204 - SX1276
#define PIN_SPI_MISO PA6
#endif
#ifndef PIN_SPI_SCK
//LOM204 - SX1276
#define PIN_SPI_SCK PA5
#endif
#ifndef PIN_SPI1_SS
//LOM204
#define PIN_SPI1_SS PB12
#endif
#ifndef PIN_SPI1_MOSI
//LOM204
#define PIN_SPI1_MOSI PB15
#endif
#ifndef PIN_SPI1_MISO
//LOM204
#define PIN_SPI1_MISO PB14
#endif
#ifndef PIN_SPI1_SCK
//LOM204
#define PIN_SPI1_SCK PB13
#endif
// I2C definitions
#ifndef PIN_WIRE_SDA
//LOM204
#define PIN_WIRE_SDA PB9
#endif
#ifndef PIN_WIRE_SCL
//LOM204
#define PIN_WIRE_SCL PB8
#endif
// Timer Definitions
// Use TIM6/TIM7 when possible as servo and tone don't need GPIO output pin
#ifndef TIMER_TONE
#define TIMER_TONE TIM6
#endif
#ifndef TIMER_SERVO
#define TIMER_SERVO TIM7
#endif
// UART Definitions
#ifndef SERIAL_UART_INSTANCE
#define SERIAL_UART_INSTANCE 4
#endif
// Default pin used for generic 'Serial' instance
// Mandatory for Firmata
#ifndef PIN_SERIAL_RX
//LOM204
#define PIN_SERIAL_RX PA10
#endif
#ifndef PIN_SERIAL_TX
//LOM204
#define PIN_SERIAL_TX PA9
#endif
//Serial1
#define PIN_SERIAL1_TX PB3
#define PIN_SERIAL1_RX PB4
//Extra LOM204
#define RADIO_TCXO_VCC_PIN PB1
#define RADIO_ANT_SWITCH_PIN_RX PA15
//LMIC
#define RADIO_NSS PA4
#define RADIO_ANT_SWITCH_HF PA15
#define RADIO_RESET PA8
#define RADIO_DIO_0 PA12
#define RADIO_DIO_1 PB2
#define RADIO_DIO_2 PB5
// Extra HAL modules
#if !defined(HAL_DAC_MODULE_DISABLED)
#define HAL_DAC_MODULE_ENABLED
#endif
/*----------------------------------------------------------------------------
* Arduino objects - C++ only
*----------------------------------------------------------------------------*/
#ifdef __cplusplus
// These serial port names are intended to allow libraries and architecture-neutral
// sketches to automatically default to the correct port name for a particular type
// of use. For example, a GPS module would normally connect to SERIAL_PORT_HARDWARE_OPEN,
// the first hardware serial port whose RX/TX pins are not dedicated to another use.
//
// SERIAL_PORT_MONITOR Port which normally prints to the Arduino Serial Monitor
//
// SERIAL_PORT_USBVIRTUAL Port which is USB virtual serial
//
// SERIAL_PORT_LINUXBRIDGE Port which connects to a Linux system via Bridge library
//
// SERIAL_PORT_HARDWARE Hardware serial port, physical RX & TX pins.
//
// SERIAL_PORT_HARDWARE_OPEN Hardware serial ports which are open for use. Their RX & TX
// pins are NOT connected to anything by default.
#ifndef SERIAL_PORT_MONITOR
#define SERIAL_PORT_MONITOR Serial
#endif
#ifndef SERIAL_PORT_HARDWARE
#define SERIAL_PORT_HARDWARE Serial
#endif
#endif
Neste exemplo, será transmitido para LoRaWAN (TTN) os dados do sensor AHT10.
Segue código final (alterado)
defines.h
/****************************************************************************************************************************
defines.h
Ethernet_Generic is a library for the W5x00 Ethernet shields trying to merge the good features of
previous Ethernet libraries
Built by Khoi Hoang https://github.com/khoih-prog/Ethernet_Generic
***************************************************************************************************************************************/
#ifndef defines_h
#define defines_h
#define DEBUG_ETHERNET_GENERIC_PORT Serial
// Debug Level from 0 to 4
#define _ETG_LOGLEVEL_ 3
#if ( defined(ARDUINO_SAMD_ZERO) || defined(ARDUINO_SAMD_MKR1000) || defined(ARDUINO_SAMD_MKRWIFI1010) \
|| defined(ARDUINO_SAMD_NANO_33_IOT) || defined(ARDUINO_SAMD_MKRFox1200) || defined(ARDUINO_SAMD_MKRWAN1300) || defined(ARDUINO_SAMD_MKRWAN1310) \
|| defined(ARDUINO_SAMD_MKRGSM1400) || defined(ARDUINO_SAMD_MKRNB1500) || defined(ARDUINO_SAMD_MKRVIDOR4000) || defined(__SAMD21G18A__) \
|| defined(ARDUINO_SAMD_CIRCUITPLAYGROUND_EXPRESS) || defined(__SAMD21E18A__) || defined(__SAMD51__) || defined(__SAMD51J20A__) || defined(__SAMD51J19A__) \
|| defined(__SAMD51G19A__) || defined(__SAMD51P19A__) || defined(__SAMD21G18A__) )
#if defined(ETHERNET_USE_SAMD)
#undef ETHERNET_USE_SAMD
#endif
#define ETHERNET_USE_SAMD true
#endif
#if ( defined(NRF52840_FEATHER) || defined(NRF52832_FEATHER) || defined(NRF52_SERIES) || defined(ARDUINO_NRF52_ADAFRUIT) || \
defined(NRF52840_FEATHER_SENSE) || defined(NRF52840_ITSYBITSY) || defined(NRF52840_CIRCUITPLAY) || defined(NRF52840_CLUE) || \
defined(NRF52840_METRO) || defined(NRF52840_PCA10056) || defined(PARTICLE_XENON) || defined(NINA_B302_ublox) || defined(NINA_B112_ublox) )
#if defined(ETHERNET_USE_NRF528XX)
#undef ETHERNET_USE_NRF528XX
#endif
#define ETHERNET_USE_NRF528XX true
#endif
#if ( defined(ARDUINO_SAM_DUE) || defined(__SAM3X8E__) )
#if defined(ETHERNET_USE_SAM_DUE)
#undef ETHERNET_USE_SAM_DUE
#endif
#define ETHERNET_USE_SAM_DUE true
#endif
#if ( defined(ARDUINO_ARCH_RP2040) || defined(ARDUINO_RASPBERRY_PI_PICO) || defined(ARDUINO_ADAFRUIT_FEATHER_RP2040) || defined(ARDUINO_GENERIC_RP2040) )
#if defined(ETHERNET_USE_RPIPICO)
#undef ETHERNET_USE_RPIPICO
#endif
#define ETHERNET_USE_RPIPICO true
#endif
#if defined(ETHERNET_USE_SAMD)
// For SAMD
// Default pin 10 to SS/CS
#define USE_THIS_SS_PIN 10
#if ( defined(ARDUINO_SAMD_ZERO) && !defined(SEEED_XIAO_M0) )
#define BOARD_TYPE "SAMD Zero"
#elif defined(ARDUINO_SAMD_MKR1000)
#define BOARD_TYPE "SAMD MKR1000"
#elif defined(ARDUINO_SAMD_MKRWIFI1010)
#define BOARD_TYPE "SAMD MKRWIFI1010"
#elif defined(ARDUINO_SAMD_NANO_33_IOT)
#define BOARD_TYPE "SAMD NANO_33_IOT"
#elif defined(ARDUINO_SAMD_MKRFox1200)
#define BOARD_TYPE "SAMD MKRFox1200"
#elif ( defined(ARDUINO_SAMD_MKRWAN1300) || defined(ARDUINO_SAMD_MKRWAN1310) )
#define BOARD_TYPE "SAMD MKRWAN13X0"
#elif defined(ARDUINO_SAMD_MKRGSM1400)
#define BOARD_TYPE "SAMD MKRGSM1400"
#elif defined(ARDUINO_SAMD_MKRNB1500)
#define BOARD_TYPE "SAMD MKRNB1500"
#elif defined(ARDUINO_SAMD_MKRVIDOR4000)
#define BOARD_TYPE "SAMD MKRVIDOR4000"
#elif defined(ARDUINO_SAMD_CIRCUITPLAYGROUND_EXPRESS)
#define BOARD_TYPE "SAMD ARDUINO_SAMD_CIRCUITPLAYGROUND_EXPRESS"
#elif defined(ADAFRUIT_FEATHER_M0_EXPRESS)
#define BOARD_TYPE "SAMD21 ADAFRUIT_FEATHER_M0_EXPRESS"
#elif defined(ADAFRUIT_METRO_M0_EXPRESS)
#define BOARD_TYPE "SAMD21 ADAFRUIT_METRO_M0_EXPRESS"
#elif defined(ADAFRUIT_CIRCUITPLAYGROUND_M0)
#define BOARD_TYPE "SAMD21 ADAFRUIT_CIRCUITPLAYGROUND_M0"
#elif defined(ADAFRUIT_GEMMA_M0)
#define BOARD_TYPE "SAMD21 ADAFRUIT_GEMMA_M0"
#elif defined(ADAFRUIT_TRINKET_M0)
#define BOARD_TYPE "SAMD21 ADAFRUIT_TRINKET_M0"
#elif defined(ADAFRUIT_ITSYBITSY_M0)
#define BOARD_TYPE "SAMD21 ADAFRUIT_ITSYBITSY_M0"
#elif defined(ARDUINO_SAMD_HALLOWING_M0)
#define BOARD_TYPE "SAMD21 ARDUINO_SAMD_HALLOWING_M0"
#elif defined(ADAFRUIT_METRO_M4_EXPRESS)
#define BOARD_TYPE "SAMD51 ADAFRUIT_METRO_M4_EXPRESS"
#elif defined(ADAFRUIT_GRAND_CENTRAL_M4)
#define BOARD_TYPE "SAMD51 ADAFRUIT_GRAND_CENTRAL_M4"
#elif defined(ADAFRUIT_FEATHER_M4_EXPRESS)
#define BOARD_TYPE "SAMD51 ADAFRUIT_FEATHER_M4_EXPRESS"
#elif defined(ADAFRUIT_ITSYBITSY_M4_EXPRESS)
#define BOARD_TYPE "SAMD51 ADAFRUIT_ITSYBITSY_M4_EXPRESS"
#define USE_THIS_SS_PIN 10
#elif defined(ADAFRUIT_TRELLIS_M4_EXPRESS)
#define BOARD_TYPE "SAMD51 ADAFRUIT_TRELLIS_M4_EXPRESS"
#elif defined(ADAFRUIT_PYPORTAL)
#define BOARD_TYPE "SAMD51 ADAFRUIT_PYPORTAL"
#elif defined(ADAFRUIT_PYPORTAL_M4_TITANO)
#define BOARD_TYPE "SAMD51 ADAFRUIT_PYPORTAL_M4_TITANO"
#elif defined(ADAFRUIT_PYBADGE_M4_EXPRESS)
#define BOARD_TYPE "SAMD51 ADAFRUIT_PYBADGE_M4_EXPRESS"
#elif defined(ADAFRUIT_METRO_M4_AIRLIFT_LITE)
#define BOARD_TYPE "SAMD51 ADAFRUIT_METRO_M4_AIRLIFT_LITE"
#elif defined(ADAFRUIT_PYGAMER_M4_EXPRESS)
#define BOARD_TYPE "SAMD51 ADAFRUIT_PYGAMER_M4_EXPRESS"
#elif defined(ADAFRUIT_PYGAMER_ADVANCE_M4_EXPRESS)
#define BOARD_TYPE "SAMD51 ADAFRUIT_PYGAMER_ADVANCE_M4_EXPRESS"
#elif defined(ADAFRUIT_PYBADGE_AIRLIFT_M4)
#define BOARD_TYPE "SAMD51 ADAFRUIT_PYBADGE_AIRLIFT_M4"
#elif defined(ADAFRUIT_MONSTER_M4SK_EXPRESS)
#define BOARD_TYPE "SAMD51 ADAFRUIT_MONSTER_M4SK_EXPRESS"
#elif defined(ADAFRUIT_HALLOWING_M4_EXPRESS)
#define BOARD_TYPE "SAMD51 ADAFRUIT_HALLOWING_M4_EXPRESS"
#elif defined(SEEED_WIO_TERMINAL)
#define BOARD_TYPE "SAMD SEEED_WIO_TERMINAL"
#elif defined(SEEED_FEMTO_M0)
#define BOARD_TYPE "SAMD SEEED_FEMTO_M0"
#elif defined(SEEED_XIAO_M0)
#define BOARD_TYPE "SAMD SEEED_XIAO_M0"
#ifdef USE_THIS_SS_PIN
#undef USE_THIS_SS_PIN
#endif
#define USE_THIS_SS_PIN A1
#warning define SEEED_XIAO_M0 USE_THIS_SS_PIN == A1
#elif defined(Wio_Lite_MG126)
#define BOARD_TYPE "SAMD SEEED Wio_Lite_MG126"
#elif defined(WIO_GPS_BOARD)
#define BOARD_TYPE "SAMD SEEED WIO_GPS_BOARD"
#elif defined(SEEEDUINO_ZERO)
#define BOARD_TYPE "SAMD SEEEDUINO_ZERO"
#elif defined(SEEEDUINO_LORAWAN)
#define BOARD_TYPE "SAMD SEEEDUINO_LORAWAN"
#elif defined(SEEED_GROVE_UI_WIRELESS)
#define BOARD_TYPE "SAMD SEEED_GROVE_UI_WIRELESS"
#elif defined(__SAMD21E18A__)
#define BOARD_TYPE "SAMD21E18A"
#elif defined(__SAMD21G18A__)
#define BOARD_TYPE "SAMD21G18A"
#elif defined(__SAMD51G19A__)
#define BOARD_TYPE "SAMD51G19A"
#elif defined(__SAMD51J19A__)
#define BOARD_TYPE "SAMD51J19A"
#elif defined(__SAMD51J20A__)
#define BOARD_TYPE "SAMD51J20A"
#elif defined(__SAM3X8E__)
#define BOARD_TYPE "SAM3X8E"
#elif defined(__CPU_ARC__)
#define BOARD_TYPE "CPU_ARC"
#elif defined(__SAMD51__)
#define BOARD_TYPE "SAMD51"
#else
#define BOARD_TYPE "SAMD Unknown"
#endif
#elif (ETHERNET_USE_SAM_DUE)
// Default pin 10 to SS/CS
#define USE_THIS_SS_PIN 10
#define BOARD_TYPE "SAM DUE"
#elif (ETHERNET_USE_NRF528XX)
// Default pin 10 to SS/CS
#define USE_THIS_SS_PIN 10
#if defined(NRF52840_FEATHER)
#define BOARD_TYPE "NRF52840_FEATHER"
#elif defined(NRF52832_FEATHER)
#define BOARD_TYPE "NRF52832_FEATHER"
#elif defined(NRF52840_FEATHER_SENSE)
#define BOARD_TYPE "NRF52840_FEATHER_SENSE"
#elif defined(NRF52840_ITSYBITSY)
#define BOARD_TYPE "NRF52840_ITSYBITSY"
#define USE_THIS_SS_PIN 10 // For other boards
#elif defined(NRF52840_CIRCUITPLAY)
#define BOARD_TYPE "NRF52840_CIRCUITPLAY"
#elif defined(NRF52840_CLUE)
#define BOARD_TYPE "NRF52840_CLUE"
#elif defined(NRF52840_METRO)
#define BOARD_TYPE "NRF52840_METRO"
#elif defined(NRF52840_PCA10056)
#define BOARD_TYPE "NRF52840_PCA10056"
#elif defined(NINA_B302_ublox)
#define BOARD_TYPE "NINA_B302_ublox"
#elif defined(NINA_B112_ublox)
#define BOARD_TYPE "NINA_B112_ublox"
#elif defined(PARTICLE_XENON)
#define BOARD_TYPE "PARTICLE_XENON"
#elif defined(ARDUINO_NRF52_ADAFRUIT)
#define BOARD_TYPE "ARDUINO_NRF52_ADAFRUIT"
#else
#define BOARD_TYPE "nRF52 Unknown"
#endif
#elif ( defined(CORE_TEENSY) )
// Default pin 10 to SS/CS
#define USE_THIS_SS_PIN 10
#if defined(__IMXRT1062__)
// For Teensy 4.1/4.0
#if defined(ARDUINO_TEENSY41)
#define BOARD_TYPE "TEENSY 4.1"
// Use true for NativeEthernet Library, false if using other Ethernet libraries
#define USE_NATIVE_ETHERNET true
#elif defined(ARDUINO_TEENSY40)
#define BOARD_TYPE "TEENSY 4.0"
#else
#define BOARD_TYPE "TEENSY 4.x"
#endif
#elif defined(__MK66FX1M0__)
#define BOARD_TYPE "Teensy 3.6"
#elif defined(__MK64FX512__)
#define BOARD_TYPE "Teensy 3.5"
#elif defined(__MKL26Z64__)
#define BOARD_TYPE "Teensy LC"
#elif defined(__MK20DX256__)
#define BOARD_TYPE "Teensy 3.2" // and Teensy 3.1 (obsolete)
#elif defined(__MK20DX128__)
#define BOARD_TYPE "Teensy 3.0"
#elif defined(__AVR_AT90USB1286__)
#error Teensy 2.0++ not supported yet
#elif defined(__AVR_ATmega32U4__)
#error Teensy 2.0 not supported yet
#else
// For Other Boards
#define BOARD_TYPE "Unknown Teensy Board"
#endif
#elif ( defined(ESP8266) )
// For ESP8266
#warning Use ESP8266 architecture
#include <ESP8266mDNS.h>
#define ETHERNET_USE_ESP8266
#define BOARD_TYPE "ESP8266"
#elif ( defined(ESP32) )
// For ESP32
#warning Use ESP32 architecture
#define ETHERNET_USE_ESP32
#define BOARD_TYPE "ESP32"
#define W5500_RST_PORT 21
#elif ETHERNET_USE_RPIPICO
// Default pin 5 (in Mbed) or 17 to SS/CS
#if defined(ARDUINO_ARCH_MBED)
// For RPI Pico using Arduino Mbed RP2040 core
// SCK: GPIO2, MOSI: GPIO3, MISO: GPIO4, SS/CS: GPIO5
#define USE_THIS_SS_PIN 17
#if defined(BOARD_NAME)
#undef BOARD_NAME
#endif
#if defined(ARDUINO_RASPBERRY_PI_PICO)
#define BOARD_TYPE "MBED RASPBERRY_PI_PICO"
#elif defined(ARDUINO_ADAFRUIT_FEATHER_RP2040)
#define BOARD_TYPE "MBED DAFRUIT_FEATHER_RP2040"
#elif defined(ARDUINO_GENERIC_RP2040)
#define BOARD_TYPE "MBED GENERIC_RP2040"
#else
#define BOARD_TYPE "MBED Unknown RP2040"
#endif
#else
// For RPI Pico using E. Philhower RP2040 core
#if (USING_SPI2)
// SCK: GPIO14, MOSI: GPIO15, MISO: GPIO12, SS/CS: GPIO13 for SPI1
#define USE_THIS_SS_PIN 13
#else
// SCK: GPIO18, MOSI: GPIO19, MISO: GPIO16, SS/CS: GPIO17 for SPI0
#define USE_THIS_SS_PIN 17
#endif
#endif
#define SS_PIN_DEFAULT USE_THIS_SS_PIN
// For RPI Pico
#warning Use RPI-Pico RP2040 architecture
#else
// For Mega
// Default pin 10 to SS/CS
#define USE_THIS_SS_PIN 10
// Reduce size for Mega
#define SENDCONTENT_P_BUFFER_SZ 512
#define BOARD_TYPE "AVR Mega"
#endif
#ifndef BOARD_NAME
#define BOARD_NAME BOARD_TYPE
#endif
#include <SPI.h>
///////////////////////////////////////////////////////////
// W5100 chips can have up to 4 sockets. W5200 & W5500 can have up to 8 sockets.
// Use EthernetLarge feature, Larger buffers, but reduced number of simultaneous connections/sockets (MAX_SOCK_NUM == 2)
#define ETHERNET_LARGE_BUFFERS
//////////////////////////////////////////////////////////
// For boards supporting multiple hardware / software SPI buses, such as STM32
// Tested OK with Nucleo144 F767ZI and L552ZE_Q so far
#if ( defined(STM32F0) || defined(STM32F1) || defined(STM32F2) || defined(STM32F3) ||defined(STM32F4) || defined(STM32F7) || \
defined(STM32L0) || defined(STM32L1) || defined(STM32L4) || defined(STM32H7) ||defined(STM32G0) || defined(STM32G4) || \
defined(STM32WB) || defined(STM32MP1) || defined(STM32L5) )
// Be sure to use true only if necessary for your board, or compile error
#define USING_CUSTOM_SPI true
#if ( USING_CUSTOM_SPI )
// Currently test OK for F767ZI and L552ZE_Q
#define USING_SPI1 true
#if (USING_SPI1)
//#include <SPI.h>
// For L552ZE-Q, F767ZI, but you can change the pins for any other boards
// SCK: 23, MOSI: 22, MISO: 25, SS/CS: 24 for SPI1
#define CUR_PIN_MISO PIN_SPI1_MISO
#define CUR_PIN_MOSI PIN_SPI1_MOSI
#define CUR_PIN_SCK PIN_SPI1_SCK
#define CUR_PIN_SS PIN_SPI1_SS
#define SPI_NEW_INITIALIZED true
// Don't create the instance with CUR_PIN_SS, or Ethernet not working
// To change for other boards' SPI libraries
SPIClass SPI_New(CUR_PIN_MOSI, CUR_PIN_MISO, CUR_PIN_SCK);
//#warning Using USE_THIS_SS_PIN = CUR_PIN_SS = 24
#if defined(USE_THIS_SS_PIN)
#undef USE_THIS_SS_PIN
#endif
#define USE_THIS_SS_PIN CUR_PIN_SS //24
#endif
#endif
#endif
//////////////////////////////////////////////////////////
#include "Ethernet_Generic.h"
#if defined(ETHERNET_LARGE_BUFFERS)
#define SHIELD_TYPE "W5x00 using Ethernet_Generic Library with Large Buffer"
#else
#define SHIELD_TYPE "W5x00 using Ethernet_Generic Library"
#endif
// Enter a MAC address and IP address for your controller below.
#define NUMBER_OF_MAC 20
byte mac[][NUMBER_OF_MAC] =
{
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x01 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x02 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x03 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x04 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x05 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x06 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x07 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x08 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x09 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x0A },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x0B },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x0C },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x0D },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x0E },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x0F },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x10 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x11 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x12 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0x13 },
{ 0xDE, 0xAD, 0xBE, 0xEF, 0xBE, 0x14 },
};
// Select the IP address according to your local network
IPAddress ip(192, 168, 100, 222);
// Google DNS Server IP
IPAddress myDns(8, 8, 8, 8);
#endif //defines_h
Gateway
LIB ETHERNET_GENERIC - W5500
INSTALE
POR FAVOR, LEIA O DOCUMENTO!
MONTAGEM
Conexão LOM204 com o módulo WIZNET W5500
LOM204 |
W5500 |
PIN_SPI1_SS
PB12 |
SCS |
PIN_SPI1_MOSI PB15 |
MOSI
(CORRETO) |
PIN_SPI1_MISO PB14 |
MISO (CORRETO) |
PIN_SPI1_SCK PB13 |
SCLK |
GND |
GND |
3.3V |
5V |
Compilando
GRAVADOR
Instale o STM32 Cube Programmer, o Arduino (STM32 PACKAGE) irá reconhecê-lo e então utilizá-lo para programar o LOM204.
Compre o ST-LINK V2
O Kit LOM204 possui um gravador ST-LINK embarcado.
Uma vez gravado o Software, o LOM204 fará o JOIN na LoRaWAN
UPLINK message
Ligado na UART1
DOWNLINK message
ACESSANDO INTERNET VIA 802.3
THANKS TO Khoi Hoang
Fontes:
Dúvidas
suporte@smartcore.com.br
Consumo: 8mA no Arduino
Sobre a SMARTCORE
A SmartCore fornece módulos para comunicação wireless, biometria, conectividade, rastreamento e automação.
Nosso portfólio inclui modem 2G/3G/4G/NB-IoT/Cat.M, satelital, módulos WiFi, Bluetooth, GNSS / GPS, Sigfox, LoRa, leitor de cartão, leitor QR code, mecanismo de impressão, mini-board PC, antena, pigtail, LCD, bateria, repetidor GPS e sensores.
Mais detalhes em www.smartcore.com.br
Nenhum comentário:
Postar um comentário