domingo, 27 de junho de 2021

PROGRAMANDO WISOL LOM204 COM ARDUINO STM 2.2.0 - CLASS A - OTAA


IMPORTANTE: Opção NÃO OFICIAL da WISOL, indicamos uso do KEIL C

O objetivo deste BLOG é demonstrar como é possível programar o módulo WISOL LOM204A02 via Arduino Framework e assim utilizá-lo como OPENCPU (atualmente programado com o KEIL C).

IMPORTANTE: Opção NÃO OFICIAL da WISOL, indicamos uso do KEIL C


O exemplo fará a leitura do sensor AHT10 VIA I2C e então fará a publicação no servidor loraWAN TTN. No exemplo, foi utilizado o  KIT LOM204A02 da Wisol, e como gateway LoraWAN um Dragino modelo LG308 e servidor TTN.

I2C

I²C (Inter-Integrated Circuit) é um barramento serial Barramento multimestre desenvolvido pela Philips que é usado para conectar periféricos de baixa velocidade a uma placa mãe, a um sistema embarcado ou a um telefone celular. O nome significa Circuito Inter-integrado e é pronunciado I-ao quadrado-C, ou I-dois-C. Desde o dia 1 de Outubro de 2006, nenhuma taxa de licenciamento é exigida para implementar o protocolo I²C, contudo, algumas taxas ainda são exigidas para obtenção de endereços escravos I²C.


AHT10


O Sensor AHT10 é um componente de alta precisão desenvolvido especialmente para integração em projetos com microcontroladores, Arduino e Raspberry Pi, por exemplo, vindo a fazer a medição precisa da temperatura e umidade.
Como principal diferencial, apresenta alta confiabilidade nos resultados, com ótima estabilidade ao longo prazo, além de já ser calibrado de fábrica, proporcionando respostas rápidas, além de possuir forte capacidade anti-interferência.
O Sensor AHT10 apresenta comunicação do tipo I2C e dimensões físicas muito pequenas, contando com baixo consumo de energia e pinagem própria para uso imediata, já que está integrado em uma placa.
Ele se apresenta como uma ótima opção para substituição de sensores amplamente conhecidos, como o DHT11, AM2302, SHT20, entre outros. Contando ainda com função de compensação de temperatura.

TTN
The Thing Network

A Rede de Coisas (TTN) é uma iniciativa iniciada pela sociedade civil holandesa. O objetivo é ter redes LoRaWAN instaladas em todas as cidades do mundo. Ao interconectar essas redes locais, a TTN quer construir uma infra-estrutura mundial para facilitar uma Internet das Coisas (IoT) pública.

A The Things Network (TTN) é o servidor IoT na nuvem utilizado nesse projeto. É um dos servidores gratuitos para LoRaWAN mais utilizados, com mais de 90 mil desenvolvedores, mais de 9 mil gateways de usuários conectados à rede ao redor do mundo e mais de 50 mil aplicações em funcionamento.

A TTN comercializa nós e gateways LoRa e provê treinamento individual e coletivo para empresas e desenvolvedores que desejam utilizar o LoRa. Possui uma comunidade bem ativa nos fóruns, sempre colaborando e ajudando a resolver problemas, além de prover diversos meios de integrar a TTN com a aplicação que se deseja usar. Possui integração nativa com diversas aplicações como: Cayenne, Hypertext Transfer Protocol (HTTP), permitindo ao usuário realizar uplink para um gateway e receber downlink por HTTP, OpenSensors e EVRYTHNG . Caso o usuário queira criar sua própria aplicação, a TTN disponibiliza Application Programming Interface (API) para uso com Message Queuing Telemetry Transport (MQTT) e diversos Software Developer Kits (SDK) para uso com as linguagens Python, Java , Node.Js , NODE-RED e Go

A rede TTN utiliza o protocolo LoRaWAN objetivando uma cobertura em longo alcance para os dispositivos da rede, caracterizando-a assim com uma Wide Area Network (WAN). Devido ao baixo consumo de energia e ao uso da tecnologia LoRa, é chamada de LPWAN (Low Power Wide Area Network). O grande diferencial da TTN é seu estabelecimento como uma rede aberta (open-source) e colaborativa (crowd-sourced), onde qualquer usuário pode contribuir instalando um gateway em sua residência.

Os elementos da TTN são classificados como: 

• Endpoints (nós): Os dispositivos responsáveis pela camada de sensoriamento da rede, o endpoint LoRaWAN. Podem coletar informações através de sensores e também acionar dispositivos/máquinas via atuadores. São configurados através de uma das três classes distintas do protocolo LaRaWAN; 

• Gateways: Elementos responsáveis por concentrar e processar as informações enviadas pelos endpoints. Os gateways em geral estão conectados a internet, seja por WiFi/Ethernet ou 3G/4G em locais remotos. Mesmo que uma mesma rede LoRaWAN tenha diferentes objetivos, baseados em aplicações distintas, os gateways possuem o objetivo comum de fornecer a maior área de cobertura possível; 

• Aplicações: Conectar e interligar os diferentes dispositivos da rede TTN para o fornecimento de informações gerais sobre a coleta de dados dos dispositivos.

ARDUINO

O que é Arduino? Se você sabe pouco sobre Arduino, por favor dê uma olhada abaixo:

Você conhece Arduino. Instale o IDE primeiro:
https://www.arduino.cc/en/Main/Software

LOM204 e Arduino

LOM204 é baseado em STM32L071.  No Arduino STM32 existe este core.

Como instalar Arduino STM32?
adicionar em Arquivo Preferências URLs adicionais

http://github.com/stm32duino/BoardManagerFiles/raw/main/package_stmicroelectronics_index.json


BSP


Em seguida, instale o BSP para STM32. Se a instalação estiver concluída como segue:

LIB LoraWAN para Arduino - LMIC (Catena)


POR FAVOR, LEIA O DOCUMENTO!

Adicione ao Arduino IDE:

Ok, o ambiente de desenvolvimento está pronto. Abra o  exemplo TTN-OTA.ino  e configure 3 parâmetros para LoRaWAN_OTAA os quais deve ser obtidos no servidor TTN.



Defina mapeamento de Pinos para ser compatível com LOM204.
const lmic_pinmap lmic_pins = {
    .nss = RADIO_NSS,
    .rxtx = RADIO_ANT_SWITCH_HF, 
    .rst = RADIO_RESET,
    .dio = {RADIO_DIO_0, RADIO_DIO_1, RADIO_DIO_2},
};

Defina a Região
lmic_project_config.h

// project-specific definitions //#define CFG_eu868 1 //#define CFG_us915 1 #define CFG_au915 1 //#define CFG_as923 1 // #define LMIC_COUNTRY_CODE LMIC_COUNTRY_CODE_JP /* for as923-JP */ //#define CFG_kr920 1 //#define CFG_in866 1 #define CFG_sx1276_radio 1 //#define LMIC_USE_INTERRUPTS








Adicionar em  boards.txt

# LOM204
GenL0.menu.pnum.GENERIC_L072CZYX=WISOL LOM204
GenL0.menu.pnum.GENERIC_L072CZYX.upload.maximum_size=131072
GenL0.menu.pnum.GENERIC_L072CZYX.upload.maximum_data_size=20480
GenL0.menu.pnum.GENERIC_L072CZYX.build.board=GENERIC_L072CZYX
GenL0.menu.pnum.GENERIC_L072CZYX.build.product_line=STM32L072xx
GenL0.menu.pnum.GENERIC_L072CZYX.build.variant=STM32L0xx/LOM204

Teremos então no menu o LOM204



No PACKAGE do STM32, alguns arquivos tiveram que ser alterados:

Em
C:\Users\Usuario\AppData\Local\Arduino15\packages\STMicroelectronics\hardware\stm32\2.2.0\variants\STM32L0xx

Descompacte

Teremos em variants uma placa LOM204


Conteúdo de variant_generic.h (alterado para LOM204)

/*
 *******************************************************************************
 * Copyright (c) 2020-2021, STMicroelectronics
 * All rights reserved.
 *
 * This software component is licensed by ST under BSD 3-Clause license,
 * the "License"; You may not use this file except in compliance with the
 * License. You may obtain a copy of the License at:
 *                        opensource.org/licenses/BSD-3-Clause
 *
 *******************************************************************************
 */
#pragma once

/*----------------------------------------------------------------------------
 *        STM32 pins number
 *----------------------------------------------------------------------------*/
#define PA0                     PIN_A0
#define PA1                     PIN_A1
#define PA2                     PIN_A2
#define PA3                     PIN_A3
#define PA4                     PIN_A4
#define PA5                     PIN_A5
#define PA6                     PIN_A6
#define PA7                     PIN_A7
#define PA8                     8
#define PA9                     9
#define PA10                    10
#define PA11                    11
#define PA12                    12
#define PA13                    13
#define PA14                    14
#define PA15                    15
#define PB0                     PIN_A8
#define PB1                     PIN_A9
#define PB2                     18
#define PB3                     19
#define PB4                     20
#define PB5                     21
#define PB6                     22
#define PB7                     23
#define PB8                     24
#define PB9                     25
#define PB10                    26
#define PB11                    27
#define PB12                    28
#define PB13                    29
#define PB14                    30
#define PB15                    31
#define PC0                     PIN_A10
#define PC1                     PIN_A11
#define PC2                     PIN_A12
#define PC13                    35
#define PC14                    36
#define PC15                    37
#define PH0                     38
#define PH1                     39

// Alternate pins number
#define PA2_ALT1                (PA2  | ALT1)
#define PA3_ALT1                (PA3  | ALT1)
#define PA6_ALT1                (PA6  | ALT1)
#define PA7_ALT1                (PA7  | ALT1)
#define PA14_ALT1               (PA14 | ALT1)
#define PB4_ALT1                (PB4  | ALT1)
#define PB5_ALT1                (PB5  | ALT1)

#define NUM_DIGITAL_PINS        40
#define NUM_ANALOG_INPUTS       13

// On-board LED pin number
#ifndef LED_BUILTIN
  #define LED_BUILTIN           PNUM_NOT_DEFINED
#endif

// On-board user button
#ifndef USER_BTN
  #define USER_BTN              PNUM_NOT_DEFINED
#endif

// SPI definitions
#ifndef PIN_SPI_SS
//LOM204
  #define PIN_SPI_SS            PA4
#endif
#ifndef PIN_SPI_SS1
  #define PIN_SPI_SS1           PA15
#endif
#ifndef PIN_SPI_SS2
  #define PIN_SPI_SS2           PNUM_NOT_DEFINED
#endif
#ifndef PIN_SPI_SS3
  #define PIN_SPI_SS3           PNUM_NOT_DEFINED
#endif
#ifndef PIN_SPI_MOSI
//LOM204
  #define PIN_SPI_MOSI          PA7
#endif
#ifndef PIN_SPI_MISO
//LOM204
  #define PIN_SPI_MISO          PA6
#endif
#ifndef PIN_SPI_SCK
//LOM204
  #define PIN_SPI_SCK           PA5
#endif

#ifndef PIN_SPI3_MOSI
//LOM204
  #define PIN_SPI3_MOSI          PB15
#endif
#ifndef PIN_SPI3_MISO
//LOM204
  #define PIN_SPI3_MISO          PB14
#endif
#ifndef PIN_SPI3_SCK
//LOM204
  #define PIN_SPI3_SCK           PB13
#endif

// I2C definitions
#ifndef PIN_WIRE_SDA
//LOM204
  #define PIN_WIRE_SDA          PB9
#endif
#ifndef PIN_WIRE_SCL
//LOM204
  #define PIN_WIRE_SCL          PB8
#endif

// Timer Definitions
// Use TIM6/TIM7 when possible as servo and tone don't need GPIO output pin
#ifndef TIMER_TONE
  #define TIMER_TONE            TIM6
#endif
#ifndef TIMER_SERVO
  #define TIMER_SERVO           TIM7
#endif

// UART Definitions
#ifndef SERIAL_UART_INSTANCE
  #define SERIAL_UART_INSTANCE  4
#endif

// Default pin used for generic 'Serial' instance
// Mandatory for Firmata
#ifndef PIN_SERIAL_RX
//LOM204
  #define PIN_SERIAL_RX         PA10
#endif
#ifndef PIN_SERIAL_TX
//LOM204
  #define PIN_SERIAL_TX         PA9
#endif


//Serial1
#define PIN_SERIAL1_TX         PB3
#define PIN_SERIAL1_RX         PB4

//Extra LOM204

#define RADIO_TCXO_VCC_PIN    PB1
#define RADIO_ANT_SWITCH_PIN_RX PA15

//LMIC
#define RADIO_NSS                            PA4   
#define RADIO_ANT_SWITCH_HF PA15
#define RADIO_RESET PA8
#define RADIO_DIO_0 PA12
#define RADIO_DIO_1 PB2
#define RADIO_DIO_2 PB5                 

// Extra HAL modules
#if !defined(HAL_DAC_MODULE_DISABLED)
  #define HAL_DAC_MODULE_ENABLED
#endif

/*----------------------------------------------------------------------------
 *        Arduino objects - C++ only
 *----------------------------------------------------------------------------*/

#ifdef __cplusplus
  // These serial port names are intended to allow libraries and architecture-neutral
  // sketches to automatically default to the correct port name for a particular type
  // of use.  For example, a GPS module would normally connect to SERIAL_PORT_HARDWARE_OPEN,
  // the first hardware serial port whose RX/TX pins are not dedicated to another use.
  //
  // SERIAL_PORT_MONITOR        Port which normally prints to the Arduino Serial Monitor
  //
  // SERIAL_PORT_USBVIRTUAL     Port which is USB virtual serial
  //
  // SERIAL_PORT_LINUXBRIDGE    Port which connects to a Linux system via Bridge library
  //
  // SERIAL_PORT_HARDWARE       Hardware serial port, physical RX & TX pins.
  //
  // SERIAL_PORT_HARDWARE_OPEN  Hardware serial ports which are open for use.  Their RX & TX
  //                            pins are NOT connected to anything by default.
  #ifndef SERIAL_PORT_MONITOR
    #define SERIAL_PORT_MONITOR   Serial
  #endif
  #ifndef SERIAL_PORT_HARDWARE
    #define SERIAL_PORT_HARDWARE  Serial
  #endif
#endif

Neste exemplo, será transmitido para LoRaWAN (TTN) os dados do sensor AHT10.

Segue código final (alterado)

/******************************************************************************* * Copyright (c) 2015 Thomas Telkamp and Matthijs Kooijman * Copyright (c) 2018 Terry Moore, MCCI * * Permission is hereby granted, free of charge, to anyone * obtaining a copy of this document and accompanying files, * to do whatever they want with them without any restriction, * including, but not limited to, copying, modification and redistribution. * NO WARRANTY OF ANY KIND IS PROVIDED. * * This example sends a valid LoRaWAN packet with payload "Hello, * world!", using frequency and encryption settings matching those of * the The Things Network. * * This uses OTAA (Over-the-air activation), where where a DevEUI and * application key is configured, which are used in an over-the-air * activation procedure where a DevAddr and session keys are * assigned/generated for use with all further communication. * * Note: LoRaWAN per sub-band duty-cycle limitation is enforced (1% in * g1, 0.1% in g2), but not the TTN fair usage policy (which is probably * violated by this sketch when left running for longer)! * To use this sketch, first register your application and device with * the things network, to set or generate an AppEUI, DevEUI and AppKey. * Multiple devices can use the same AppEUI, but each device has its own * DevEUI and AppKey. * * Do not forget to define the radio type correctly in * arduino-lmic/project_config/lmic_project_config.h or from your BOARDS.txt. * *******************************************************************************/ #include <lmic.h> #include <hal/hal.h> #include <SPI.h>



HardwareSerial Serial1(PB4, PB3); #include <AHT10.h> #include <Wire.h> uint8_t readStatus = 0; AHT10 myAHT20(AHT10_ADDRESS_0X38, AHT20_SENSOR); // // For normal use, we require that you edit the sketch to replace FILLMEIN // with values assigned by the TTN console. However, for regression tests, // we want to be able to compile these scripts. The regression tests define // COMPILE_REGRESSION_TEST, and in that case we define FILLMEIN to a non- // working but innocuous value. // #ifdef COMPILE_REGRESSION_TEST # define FILLMEIN 0 #else # warning "You must replace the values marked FILLMEIN with real values from the TTN control panel!" # define FILLMEIN (#dont edit this, edit the lines that use FILLMEIN) #endif // This EUI must be in little-endian format, so least-significant-byte // first. When copying an EUI from ttnctl output, this means to reverse // the bytes. For TTN issued EUIs the last bytes should be 0xD5, 0xB3, // 0x70. static const u1_t PROGMEM APPEUI[8]={ 0xXX, 0xC0, 0x01, 0xD0, 0x7E, 0xD5, 0xB3, 0x70 }; void os_getArtEui (u1_t* buf) { memcpy_P(buf, APPEUI, 8);} // This should also be in little endian format, see above. static const u1_t PROGMEM DEVEUI[8]={ 0x92, 0xXX, 0xEE, 0xFE, 0xFF, 0x1D, 0x57, 0x88 }; void os_getDevEui (u1_t* buf) { memcpy_P(buf, DEVEUI, 8);} // This key should be in big endian format (or, since it is not really a // number but a block of memory, endianness does not really apply). In // practice, a key taken from ttnctl can be copied as-is. static const u1_t PROGMEM APPKEY[16] = { 0x55, 0x1E, 0x2D, 0xXX, 0x16, 0x7B, 0x2F, 0xBD, 0x68, 0x5D, 0xE2, 0xE9, 0x9A, 0x40, 0x27, 0x42 }; void os_getDevKey (u1_t* buf) { memcpy_P(buf, APPKEY, 16);} uint8_t mydata[] = {0,0,0}; //Temperature, Humidity, NULL static osjob_t sendjob; // Schedule TX every this many seconds (might become longer due to duty // cycle limitations). const unsigned TX_INTERVAL = 15; // Pin mapping const lmic_pinmap lmic_pins = { .nss = RADIO_NSS, .rxtx = RADIO_ANT_SWITCH_HF, .rst = RADIO_RESET, .dio = {RADIO_DIO_0, RADIO_DIO_1, RADIO_DIO_2}, }; void printHex2(unsigned v) { v &= 0xff; if (v < 16) Serial.print('0'); Serial.print(v, HEX); } void onEvent (ev_t ev) { Serial.print(os_getTime()); Serial.print(": "); switch(ev) { case EV_SCAN_TIMEOUT: Serial.println(F("EV_SCAN_TIMEOUT")); break; case EV_BEACON_FOUND: Serial.println(F("EV_BEACON_FOUND")); break; case EV_BEACON_MISSED: Serial.println(F("EV_BEACON_MISSED")); break; case EV_BEACON_TRACKED: Serial.println(F("EV_BEACON_TRACKED")); break; case EV_JOINING: Serial.println(F("EV_JOINING")); break; case EV_JOINED: Serial.println(F("EV_JOINED")); { u4_t netid = 0; devaddr_t devaddr = 0; u1_t nwkKey[16]; u1_t artKey[16]; LMIC_getSessionKeys(&netid, &devaddr, nwkKey, artKey); Serial.print("netid: "); Serial.println(netid, DEC); Serial.print("devaddr: "); Serial.println(devaddr, HEX); Serial.print("AppSKey: "); for (size_t i=0; i<sizeof(artKey); ++i) { if (i != 0) Serial.print("-"); printHex2(artKey[i]); } Serial.println(""); Serial.print("NwkSKey: "); for (size_t i=0; i<sizeof(nwkKey); ++i) { if (i != 0) Serial.print("-"); printHex2(nwkKey[i]); } Serial.println(); } // Disable link check validation (automatically enabled // during join, but because slow data rates change max TX // size, we don't use it in this example. LMIC_setLinkCheckMode(0); break; /* || This event is defined but not used in the code. No || point in wasting codespace on it. || || case EV_RFU1: || Serial.println(F("EV_RFU1")); || break; */ case EV_JOIN_FAILED: Serial.println(F("EV_JOIN_FAILED")); break; case EV_REJOIN_FAILED: Serial.println(F("EV_REJOIN_FAILED")); break; case EV_TXCOMPLETE: Serial.println(F("EV_TXCOMPLETE (includes waiting for RX windows)")); if (LMIC.txrxFlags & TXRX_ACK) Serial.println(F("Received ack")); if (LMIC.dataLen) { Serial.print(F("Received ")); Serial.print(LMIC.dataLen); Serial.println(F(" bytes of payload")); } // Schedule next transmission os_setTimedCallback(&sendjob, os_getTime()+sec2osticks(TX_INTERVAL), do_send); break; case EV_LOST_TSYNC: Serial.println(F("EV_LOST_TSYNC")); break; case EV_RESET: Serial.println(F("EV_RESET")); break; case EV_RXCOMPLETE: // data received in ping slot Serial.println(F("EV_RXCOMPLETE")); break; case EV_LINK_DEAD: Serial.println(F("EV_LINK_DEAD")); break; case EV_LINK_ALIVE: Serial.println(F("EV_LINK_ALIVE")); break; /* || This event is defined but not used in the code. No || point in wasting codespace on it. || || case EV_SCAN_FOUND: || Serial.println(F("EV_SCAN_FOUND")); || break; */ case EV_TXSTART: Serial.println(F("EV_TXSTART")); char mydata_temperature_humidity[64]; sprintf(mydata_temperature_humidity, "Temperature: %u Humidity %u",(uint8_t) myAHT20.readTemperature(),(uint8_t) myAHT20.readHumidity()); Serial.println(mydata_temperature_humidity); mydata[0]=(uint8_t) myAHT20.readTemperature(); //payload mydata[1]=(uint8_t) myAHT20.readHumidity(); //payload break; case EV_TXCANCELED: Serial.println(F("EV_TXCANCELED")); break; case EV_RXSTART: /* do not print anything -- it wrecks timing */ break; case EV_JOIN_TXCOMPLETE: Serial.println(F("EV_JOIN_TXCOMPLETE: no JoinAccept")); break; default: Serial.print(F("Unknown event: ")); Serial.println((unsigned) ev); break; } } void do_send(osjob_t* j){ // Check if there is not a current TX/RX job running if (LMIC.opmode & OP_TXRXPEND) { Serial.println(F("OP_TXRXPEND, not sending")); } else { // Prepare upstream data transmission at the next possible time. LMIC_setTxData2(1, mydata, sizeof(mydata)-1, true); //ack Serial.println(F("Packet queued")); } // Next TX is scheduled after TX_COMPLETE event. } void setup() {
//LOM204 pinMode(RADIO_TCXO_VCC_PIN,OUTPUT); digitalWrite(RADIO_TCXO_VCC_PIN,HIGH); //LOM204 Serial.begin(9600); Serial.println(F("Starting")); while (myAHT20.begin() != true) { Serial.println(F("AHT20 not connected or fail to load calibration coefficient")); //(F()) save string to flash & keeps dynamic memory free delay(5000); } Serial.println(F("AHT20 OK")); // LMIC init os_init(); // Reset the MAC state. Session and pending data transfers will be discarded. LMIC_reset(); LMIC_setClockError(MAX_CLOCK_ERROR * 1 / 100); LMIC_selectSubBand(1); //TTN - FSB2 start in 0
// Start job (sending automatically starts OTAA too) do_send(&sendjob); } void loop() { os_runloop_once(); }














Gateway

Montagem

Compilando

Gravador

Instale o STM32 Cube Programmer, o Arduino (STM32 PACKAGE) irá reconhecê-lo e então utilizá-lo para programar o LOM204. O Kit LOM204 possui um gravador ST-LINK embarcado.

Caso não tenhas um Kit LOM204 ou seja, apenas um módulo, utilize o um ST-LINK V2


Uma vez gravado o Software, o LOM204 fará o JOIN na LoRaWAN:



Neste exemplo, utilizaremos o LOM204A2 (EVL20XA R1) para requisitar a temperatura e umidade por meio do sensor AHT10 via barramento I2C. O AHT10 deve ser instalado:


UPLINK message
Ligado na UART1


DOWNLINK message



Fontes:


Dúvidas

suporte@smartcore.com.br


Consumo: 8mA no Arduino 


Sobre a SMARTCORE

A SmartCore fornece módulos para comunicação wireless, biometria, conectividade, rastreamento e automação.
Nosso portfólio inclui modem 2G/3G/4G/NB-IoT/Cat.M, satelital, módulos WiFi, Bluetooth, GNSS / GPS, Sigfox, LoRa, leitor de cartão, leitor QR code, mecanismo de impressão, mini-board PC, antena, pigtail, LCD, bateria, repetidor GPS e sensores.

Mais detalhes em www.smartcore.com.br

Nenhum comentário:

Postar um comentário